En apenas nueve años los cristales de tiempo han pasado de la imposibilidad física a la realidad práctica. Y es sorprendente que se haya producido un cambio tan brusco en tan poco tiempo. Cuando el físico teórico estadounidense, y ganador del Premio Nobel de Física en 2004, Frank Wilczek propuso su formulación teórica en 2012 buena parte de la comunidad científica se llevó las manos a la cabeza. Y tenía motivos para hacerlo.
La «ocurrencia» de Wilczek era contraria a las leyes de la física, especialmente al segundo principio de la termodinámica. Esta ley fundamental establece que la entropía de un sistema termodinámico aislado siempre se incrementa con el transcurso del tiempo hasta alcanzar un estado de equilibrio termodinámico en el que la entropía es máxima.
Esta definición formal es poco intuitiva, en gran medida debido a que la palabra entropía aparece dos veces en ella. Explicar de forma rigurosa qué es la entropía solo complicaría aún más el artículo, pero, afortunadamente, podemos intuir este concepto de una manera sencilla siempre que, eso sí, aceptemos sacrificar un poco de rigor. La entropía suele formularse como el grado de desorden presente de forma natural en un sistema físico.
Ante todo, un cristal de tiempo es, sencillamente, un cristal, por lo que es una buena idea que comencemos repasando qué es este objeto desde un punto de vista fisicoquímico. Podemos definir un cristal como una estructura de la materia cuyos átomos se disponen de una manera homogénea y ordenada, dando forma a un patrón que se repite periódicamente a lo largo del espacio.
Son muy abundantes en la naturaleza; de hecho, las piedras preciosas, el azúcar y la sal son cristales, entre muchos otros objetos que se originan de una forma completamente natural. Sin embargo, desde un punto de vista fisicoquímico el vidrio no es un cristal debido a que, en realidad, es un objeto con una estructura atómica amorfa.
Durante una de sus clases en el MIT (Instituto Tecnológico de Massachusetts), a Frank Wilczek se le ocurrió que podría existir un tipo diferente de cristales cuya estructura atómica, en vez de repetirse en el espacio, se repitiese periódicamente a lo largo del tiempo. Es difícil imaginar algo así, y, como hemos visto en los primeros párrafos de este artículo, la comunidad científica acogió la idea con mucho recelo debido a que parecía contravenir las leyes de la física.
Además, fabricar un cristal de tiempo como los que proponía Wilczek requería encontrar la forma de romper de forma espontánea la simetría temporal, y en aquel momento este propósito parecía inabarcable. Un objeto estable y aislado de cualquier perturbación permanece inalterado a lo largo del tiempo, de ahí que preserve la simetría de traslación temporal. Sin embargo, un cristal de tiempo debería ser capaz simultáneamente de preservar su estabilidad y cambiar su estructura cristalina de forma periódica.
Esta idea tiene una implicación que resulta fácil intuir: si observamos el cristal de tiempo en distintos instantes deberíamos percibir que su estructura no es siempre la misma. Debería variar periódicamente, un comportamiento que inevitablemente nos lleva a identificarlo como un nuevo estado de la materia diferente a las fases sólida, líquida, gaseosa y plasmática. En determinadas condiciones también son posibles otros estados de la materia mucho más inusuales, como el Condensado de Bose-Einstein, pero en mayor o menor medida todos estamos familiarizados con estas cuatro fases.
Durante los últimos cinco años varios grupos de investigación, entre los que se encuentra el grupo en el que participa el físico español Pablo Hurtado, se están afanando para proponer estrategias que persiguen permitirnos construir un cristal de tiempo. Y los primeros resultados son muy prometedores. De hecho, ya hay sobre la mesa varias propuestas que han arrojado un resultado muy esperanzador en las simulaciones computacionales.
Pero esto no es todo. En 2017 se llevaron a cabo las primeras pruebas experimentales actuando sobre el espín de un sistema cuántico al someterlo a una fuerza externa que cambia de forma periódica a lo largo del tiempo. Es evidente que la física involucrada en la puesta a punto de cristales de tiempo está dando sus primeros pasos.
Queda mucho por hacer, y aún será necesario investigar mucho más, pero un artículo científico publicado hace solo unos días y en el que participan investigadores de Google y de las universidades estadounidenses de Princeton y Stanford, entre otras instituciones, nos invita a contemplar el futuro de los cristales de tiempo con un optimismo razonable.